

your partner in sensor technology.

User Manual HTP501

Digital Humidity and Temperature Probe up to 120 °C (248 °F)

www.epluse.com

Content

1	Gene	eral Information	. 3
	1.1	Explanation of Warning Notices and Symbols	. 3
	1.2	Safety Instructions	. 4
		1.2.1 General Safety Instructions	. 4
		1.2.2 Intended Use	. 4
		1.2.3 Mounting, Start-up and Operation	. 4
	1.3	Environmental Aspects	. 5
	1.4	ESD Protection	. 5
2	Scop	be of Supply	. 5
3	Prod	uct Description	. 6
	3.1	General	. 6
	3.2	Dimensions	. 7
	3.3	Electrical Connection	. 7
4	Mou	nting and Installation	. 8
	4.1	Wall and Ceiling Mount	. 8
	4.2	Duct Mount	. 9
	4.3	Pressure-tight Sensing Probe Type T10	. 9
		4.3.1 Installation of the Probe directly in the Process	11
	1 1	4.3.2 Installation of the Probe with Ball Valve Set.	12
_	4.4		13
5	Setu	p and Adjustment	13
	5.1	PCS10 Product Configuration Software	13
	5.Z	Modbus Setup	14
	5.3 5.4	Modbus Register Map	10
	5.4 5.5	Configurable Custom Modulus Map	10
	5.6	Moduls RTI Examples	19
6	Main	tenance and Service	21
Ŭ	6 1	Cleaning	21
	6.2	Filter Cap Replacement	22
	6.3	Protection during Site Cleaning Operations	22
	6.4	RH and T Calibration and Adjustment	22
	6.5	Repairs	23
	6.6	Spare Parts	23
7	Acce	essories	23
8	Tech	nical Data	24
9	Conf	ormity	26
	9.1	Declarations of Conformity	26
	9.2	FCC Part 15 Compliance Statement	26
	9.3	ICES-003 Compliance Statement	26
	9.4	DNV Type Approval	26

1 General Information

This user manual serves for ensuring proper handling and optimal functioning of the device. The user manual shall be read before commissioning the equipment and it shall be provided to all staff involved in transport, installation, operation, maintenance and repair. E+E Elektronik Ges.m.b.H. does not accept warranty and liability claims neither upon this publication nor in case of improper treatment of the described products.

All information, technical data and diagrams included in this document are based on the information available at the time of writing. It may contain technical inaccuracies and typographical errors. The contents will be revised on a regular basis and changes will be implemented in subsequent versions. The described product(s) and the contents of this document may be changed or improved at any time without prior notice.

All rights reserved by E+E Elektronik Ges.m.b.H. No part of this document may be reproduced, published or publicly displayed in any form or by any means, nor may its contents be modified, translated, adapted, sold or disclosed to a third party without prior written permission of E+E Elektronik Ges.m.b.H.

i PLEASE NOTE

Find this document and further product information on our website at www.epluse.com/htp501.

1.1 Explanation of Warning Notices and Symbols

Safety precautions

Precautionary statements warn of hazards in handling the device and provide information on their prevention. The safety instruction labeling is classified by hazard severity and is divided into the following groups:

A DANGER

Danger indicates hazards for persons. If the safety instruction marked in this way is not followed, the hazard will verly likely result in severe injury or death.

MARNING

Warning indicates hazards for persons. If the safety instruction marked in this way is not followed, there is a risk of injury or death.

Caution indicates hazards for persons. If the safety instruction marked in this way is not followed, minor or moderate injuries may occur.

NOTICE

Notice signals danger to objects or data. If the notice is not observed, damage to property or data may occur.

Informational notes

Informational notes provide important information which stands out due to its relevance.

i INFO

The information symbol indicates tips on handling the device or provides additional information on it. The information is useful for reaching optimal performance of the device.

The title field can deviate from "INFO" depending on the context. For instance, it may also read "PLEASE NOTE".

1.2 Safety Instructions

1.2.1 General Safety Instructions

NOTICE

Improper handling of the device may result in its damage.

- The HTP501 enclosure, the sensing probe and the sensing module shall not be exposed to unnecessary mechanical stress.
- When replacing the filter cap make sure not to touch the sensing elements.
- The device must be operated with the filter cap on at all times.
- For sensor cleaning and filter cap replacement please see "Cleaning Instructions" at www.epluse.com/htp501.
- Installation, electrical connection, maintenance and commissioning shall be performed by qualified personnel only.
- Use the HTP501 only as intended and observe all technical specifications.
- The device is designed for operation with power supply class III (EU) and class 2 supply (NA).
- Do not apply the supply voltage to the RS485 data lines.

1.2.2 Intended Use

The HTP501 is dedicated for reliable and accurate monitoring of humidity (RH) and temperature (T) in applications that require a wide temperature range probe.

The probe can be used in air and non-explosive gases up to 120 °C (248 °F) and 20 bar (290 psi). The mounting and installation methods described in chapter 4 Mounting and Installation shall be used.

MARNING

Non-compliance with the product documentation may cause safety risks for people and the entire measurement installation.

The manufacturer cannot be held responsible for damages as a result of incorrect handling, installation and maintenance of the device.

- Do not use HTP501 in explosive atmosphere or for measurement of aggressive gases.
- This device is not appropriate for safety, emergency stop or other critical applications where device malfunction or failure could cause injury to human beings.
- The device may not be manipulated with tools other than specifically described in this manual.

NOTICE

Failing to follow the instructions in this user manual may lead to measurement inaccuracy and device failures.

- The HTP501 may only be operated under the conditions described in this user manual and within the specification included in chapter 8 Technical Data.
- Unauthorized product modification leads to loss of all warranty claims. Modification may be accomplished only with an explicit permission of E+E Elektronik Ges.m.b.H.!

1.2.3 Mounting, Start-up and Operation

The HTP501 humidity and temperature probe has been produced under state of the art manufacturing conditions, has been thoroughly tested and has left the factory after fulfilling all safety criteria. The manufacturer has taken all precautions to ensure safe operation of the device. The user must ensure that the device is set up and installed in a way that does not impair its safe use. The user is responsible for observing all applicable local and international safety guidelines for safe installation and operation of the device. This user manual contains information and warnings that must be observed by the user in order to ensure safe operation.

i PLEASE NOTE

The manufacturer or his authorized agent can only be held liable in case of willful or gross negligence. In any case, the scope of liability is limited to the corresponding amount of the order issued to the manufacturer. The manufacturer assumes no liability for damages incurred due to failure to comply with the applicable regulations, operating instructions or the specified operating conditions. Consequential damage is excluded from liability.

<u> W</u>ARNING

Non-compliance with the product documentation may cause accidents, personal injury or property damage.

- Mounting, installation, commissioning, start-up, operation and maintenance of the device may be performed by qualified staff only. Such staff must be authorized by the operator of the facility to carry out the mentioned activities.
- The qualified staff must have read and understood this user manual and must follow the instructions contained within. The manufacturer accepts no responsibility for non-compliance with instructions, recommendations and warnings.
- All process and electrical connections shall be thoroughly checked by authorized staff before putting the device into operation.
- Do not install or start-up a device supposed to be faulty. Make sure that such devices are not used accidentally by marking them clearly as faulty.
- A faulty device shall be removed from the process.
- Service operations other than described in this user manual may only be performed by the manufacturer.

1.3 Environmental Aspects

i PLEASE NOTE

Products from E+E Elektronik Ges.m.b.H. are developed and manufactured in compliance with relevant environmental protection requirements. Please observe local regulations for the disposal of the device.

For disposal, the individual components of the device must be separated according to local recycling regulations. The electronics shall be disposed of correctly as electronics waste.

1.4 ESD Protection

The sensing elements and the electronics board are ESD (electrostatic discharge) sensitive components of the device and must be handled as such. Failure to do so may damage the device by electrostatic discharge when touching exposed sensitive components.

2 Scope of Supply

- HTP501 Digital Humidity and Temperature Probe according to ordering code
- Inspection certificate according to DIN EN 10204-3.1
- Quick guide

3 Product Description

3.1 General

The HTP501 is a robust probe for humidity and temperature measurement in air and other non-explosive gases. It features a humidity measuring range of 0...100 %RH and a temperature measuring range of -40...+120 °C (-40...+248 °F). The probe calculates all humidity-related quantities. Type T10 ist designed for pressure-tight installation from 0.01 (0.15 psi) up to 20 bar (290 psi).

Its IP66 rating, the E+E proprietary sensor coating and the optional sensor leads protection make the probe ideal for highest requirements in terms of maximum service livetime and measurement performance.

The HTP501 is typically deployed in drying processes with high temperatures like wood, pasta or brick drying.

The HTP501 provides the measured data at its digital RS485 interface via Modbus RTU protocol. The M12x1 connector links the probe to the digital infrastructure.

Fig. 1 HTP501 probe

3.2 Dimensions

Values in mm (inch)

Type T4

Type T10

3.3 Electrical Connection

MARNING

Incorrect installation, wiring or power supply may cause overheating and therefore personal injuries or damage to property.

For correct cabling of the device, always observe the presented wiring diagram for the product version used.

The manufacturer cannot be held responsible for personal injuries or damage to property as a result of incorrect handling, installation, wiring, power supply and maintenance of the device.

The relations of electrical potential between a bus system and an HTP501 probe are characterized by the following properties:

- The bus connection is not electrically isolated from the supply connection
- The HTP501 is not electrically isolated from the supply voltage
- Each HTP501 can be supplied separately

		Pin	Assignment
Diverter overly and		1	Supply voltage 8 - 35 V DC class III ଐ (Europe) / class 2 (North America)
analogue output		2	B RS485 (D-)
C .		3	GND
	front view	4	A RS485 (D+)

i PLEASE NOTE

The sensor tube must always be earthed for DNV EMC.

4 Mounting and Installation

NOTICE

To maintain its integrity, the probe cable must not be routed over sharp edges. The cable's minimum bend radius is 5x the cable diameter in fixed installations and 10x the cable diameter when occasionally flexing the cable.

4.1 Wall and Ceiling Mount

Best measurement performance is achieved when the entire probe is located inside the environment to be monitored.

In such a case, the HTP501 may be for instance fixed onto a wall with the stainless steel mounting clip HA010225 (not included in the scope of supply, see data sheet "Accessories"), or freely hang from the ceiling on the connection cable.

i PLEASE NOTE

The sensing probe must be mounted horizontally or vertically, pointing downwards. If possible, a drip sheet should be fitted for each mounting.

i PLEASE NOTE

For probe hanging by its cable from the ceiling in applications where condensation is likely to happen it is important to avoid condense water getting from the cable to the probe and into the sensing head. For this use the drip water protection (see chapter 8 Spare Parts / Accessories).

Probe into seperation wall

Hanging probe

Dimensions in mm (inch)

Fig. 2 Mounting HTP501

4.2 Duct Mount

The probe also can be installed into a duct using the stainless steel flange HA010201 (not included in the scope of supply, see data sheet "Accessories").

Working with pressurised pipes poses a considerable risk of injury and damage to property.

When installing a HTP501-T4 in a pressurised system, precautions must be taken to prevent the sensor from shooting out. The internal feed-through (to the electronics) is suitable for up to 20 bar (290 psi). The actual working pressure (<20 bar (<290 psi)) will be determined by the choice of feed-through. In principle, non-cross-section narrowing and cross-section narrowing (cut-in) fittings can be used; cross-section narrowing fittings are only permitted in the rear part, as shown in the sketch below (grey area from 32 + 150 mm from the probe tip; clamping is also only permitted in the grey marked area). Please refer to Fig. 2 below.

Dimensions in mm (inch)

Fig. 3 HTP501 fastening zone

i INFO

Optionally, there is a SWAGElok fitting available.

Order code:

- ISO HA011102
- NPT HA011103

4.3 Pressure-tight Sensing Probe Type T10

For pressure-tight installation up to 20 bar (290 psi), a pressure-tight feedthrough is available as an accessory (see chapter 8 Spare Parts / Accessories).

\Lambda WARNING

General safety instructions for pressure-tight installation:

The installation, commissioning and operation of the HTP501 may be performed by qualified staff only. Special attention shall be paid to the correct installation of the probe into the process. In case of inappropriate installation there is the risk for the probe to be suddenly expulsed due to the pressure in the process.

Bending over the sensing probe should be avoided under any circumstances! Make sure that the surface of the probe is not damaged during installation. A damaged probe surface may lead to damaged seals and consequently to leakage and pressure loss.

The probe is rated with leakage rate B according to EN12266-1.

Safety instructions for pressure-tight feedthrough:

Do not assemble the probe and tighten the feedthrough if the plant is under pressure.

The plant must not be vented by releasing the nut (A).

Use appropriate seal on conical probe threads.

Never rotate the screw connection body (B) but hold the screw connection body (B) securely and turn the nut (A).

Avoid unnecessary disassembly of pipe screw connections.

Position the cut in fitting >75 mm (2.95") from the end of the filter cap to the end of the fitting! For a probe length of 65 mm a cut in fitting is not possible.

Installation instructions

- Tighten the nut (A) finger-tight.
- Mark the nut (A) at 6 o'clock position.
- Hold the screw connection body (B) tight and tighten the nut (A) with 1 ¼ turns till 9 o'clock position.

Assembly with high pressure applications and applications with a high security factor:

- Tighten the nut (A) until the probe (C) can no longer be turned by hand and moved axially in the feedthrough.
- Mark the nut (A) at 6 o'clock position.
- Hold the screw connection body (B) tight and tighten the nut (A) with 1 ¼ turns to 9 o'clock position.

Re-mounting:

- Slide the measurement probe with clamping ring into the fitting as far as it goes.
- Tighten the nut finger-tight, then tighten by approx. a ¼ turn using a spanner.

4.3.1 Installation of the Probe directly in the Process

NOTICE

For direct probe installation shut-off valves shall be placed on both sides of the probe insert (see Fig. 4 Installation of the HTP501-T10 probe directly into the process). This allows the sensor probe to be easily removed for maintenance and calibration.

For direct installation into a pressure chamber make sure that the pressure in the chamber and the ambient pressure are equal before removing the probe. The temperature during probe installation may deviate by max. ± 40 °C (± 72 °F) from the regular temperature during normal operation.

Replace the metal sealing ring (see Fig. 4) by a new one every time before re-installing the probe.

Probe installation steps

- 1. Close both shut-off valves.
- 2. Place the sensor probe into the probe insert and adjust the immersion depth.
- 3. Tighten the lock nut with a torque of 30 Nm.
- 4. Open the shut-off valves.

MARNING

Observe strictly the tightening torque. A torque lower than 30 Nm results in a smaller retention force of the clamping sleeve. This leads the risk of sudden expulsion of the sensing probe due to the pressure. A torque higher than 30 Nm may lead to permanent deformation of the clamping sleeve and the sensing probe. This would make the removal and re-installation of the probe difficult or even impossible.

Fig. 4 Installation of the HTP501-T10 probe directly into the process

4.3.2 Installation of the Probe with Ball Valve Set

The ball valve set allows for installation and removal of the probe without process interruption. For mounting into a duct, the ball valve shall be installed perpendicular to the flow direction.

NOTICE

The two metal sealing rings (see Fig. 5 Installation of the probe by utilizing the ball valve set) shall be replaced every time prior to re-installing the probe.

The temperature during probe installation may deviate by max. ±40 °C (±72 °F) from the regular temperature during normal operation.

Installation of the probe (see Fig. 5)

- 1. Install the probe into the ball valve while the ball valve is closed.
- **2.** Open the ball valve.
- 3. Slide the probe through the ball valve to the desired immersion depth. Depending on the process pressure additional tools may be necessary for pushing the probe into the process. Make sure not to damage the probe and the cable.
- 4. Tighten the lock nut with a torque of 30 Nm.

WARNING

Observe strictly the tightening torque. A torque lower than 30 Nm results a smaller retention force of the clamping sleeve. This leads the risk of sudden expulsion of the sensing probe due to the pressure. A torque higher than 30 Nm may lead to permanent deformation of the clamping sleeve and the sensing probe. This would make the removal and re-installation of the probe difficult or even impossible.

Fig. 5 Installation of the probe by utilizing the ball valve set

Removing the probe

- 1. Hold firmly the probe to avoid it being suddenly expulsed when releasing the lock. Do not bend damage the probe cable.
- Loosen slowly the lock nut with a spanner (spanner width 24) only till the probe is pushed out by the
 overpressure in the process. Do not completely loosen the lock nut, but only as much as necessary for the
 probe to slide.
- 3. After the probe has been pushed out of the process up to the stop, close the ball valve.
- 4. Remove the probe from the ball valve.

NOTICE

Observe the correct positioning of the sealing element 1 before reinstalling the probe.

4.4 Recommendations for accurate Humidity and Temperature Measurement

- In case the HTP501 probe is not entirely located in the environment to be monitored, large temperature differences along the probe will lead to temperature gradients. These will have an influence on the accuracy. Therefore, it is of paramount importance to minimize the temperature gradients. The biggest part of the probe shall be located in the target environment and the rest shall be thermally well insulated.
- For outdoor applications the HTP501 shall be equipped with a radiation shield (HA010502) which provides protection from rain, snow and ice. This also causes a natural ventilation which largely prevents overheating of the probe in the sun and thus a distortion of the measured values.
- For highest accuracy of the measured humidity and the calculated parameters (e.g. wet bulb temperature, dew point and others), the user can set the barometric pressure at the operating point, using the PCS10 Product Configuration Software or via Modbus protocol (see chapter 5 Setup and Adjustment). The factory setting is 1013.25 mbar.

5 Setup and Adjustment

The HTP501 is ready to use and does not require any configuration by the user. The factory setup of HTP501 corresponds to the specified order code. Please refer to the datasheet at <u>www.epluse.com/htp501</u>. If needed, the user can change the factory setup with the help of the free PCS10 Product Configuration Software and the Modbus configuration adapter (order code HA011018). Refer to chapter 5.1 below.

5.1 PCS10 Product Configuration Software

The PCS10 provides a convenient graphical user interface to the HTP501. To use the software for performing adjustments and changes in settings, please proceed as follows:

- 1. Download the PCS10 Product Configuration Software from www.epluse.com/pcs10 and install it on the PC.
- 2. Connect the HTP501 to the PC using the Modbus configuration adapter.
- 3. Start the PCS10 software.
- Follow the instructions on the PCS10 opening page for scanning the ports and identifying the connected device.
- 5. Click on the desired setup or adjustment mode from the main PCS10 menu on the left. Follow the online instructions of the PCS10 which are displayed when clicking the "Tutorial" button.
- 6. Changes are uploaded to the probe by pressing the "Sync" button.

NOTICE

The HTP501 may not be connected to any additional power supply when using the Modbus configuration adapter HA011018.

Fig. 6 HTP501 connected to a PC running PCS10

Besides an individual probe naming, the communication parameters may be changed. For the purpose of pressure compensation, the barometric air pressure at the operating site may be set. The custom Modbus map can be configured. Refer to chapter 5.4 Configurable Custom Modbus Map.

A 1- and 2-point adjustment may be carried out and the factory setup may be restored again. See chapter 6.4 RH and T Calibration and Adjustment.

The configuration of an individual probe may be exported and imported.

5.2 Modbus Setup

	Factory settings	Selectable values (via EE-PCS)
Baud rate	9 600	9 600, 19 200, 38 400, 57 600, 76 800, 115 200
Data bits	8	8
Parity	Even	None, odd, even
Stop bits	1	1, 2
Modbus address	69	1247

Tab. 1 Modbus RTU protocol settings

i PLEASE NOTE

- The recommended settings for multiple devices in a Modbus RTU network are 9600, 8, even, 1.
- The HTP501 represents 1 unit load on an RS485 network.

Device address, baud rate, parity and stop bits can be set via:

- PCS10 Product Configuration Software and the Modbus configuration adapter HA011018. The PCS10 can be downloaded free of charge from www.epluse.com/pcs10.
- Modbus protocol in the register 1 (0x00) and 2 (0x01).
 See Application Note Modbus AN0103 (available at <u>www.epluse.com/htp501</u>).

The serial number as ASCII-code is located in read-only registers 1 - 8 (0x00 - 0x07). The firmware version is located in read-only register 9 (0x08) (bit 15...8 = major release; bit 7...0 = minor release). The sensor name as ASCII-code is located in read-only registers 10 - 17 (0x09 - 0x11).

NOTICE

When reading information that spans multiple registers, it is always necessary to read all registers, even if the desired information requires less.

NOTICE

For obtaining the correct floating point values, both registers have to be read within the same reading cycle. The measured value can change between two Modbus requests, exponent and mantissa may get inconsistent then.

i INFO

The Modbus function codes mentioned throughout this document shall be used as described in the MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3, chapter 6: www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

Communication settings (INT16)

Parameter	Register number ¹⁾ [Dec]	Register address ²⁾ [Hex]	Size ³⁾
Write register: function code 0x06			
Modbus address ⁴⁾	1	00	1
Modbus protocol settings ⁴⁾	2	01	1

Device information (INT16)

Parameter	Register number ¹⁾ [Dec]	Register address ²⁾ [Hex]	Size ³⁾
Read register: function code 0x03	/ 0x04		
Serial number (as ASCII)	1	00	8
Firmware version	9	08	1
Sensor name (as ASCII)	10	09	8
Device status (bit decoded) ⁵⁾	602	259	1

Application Parameter (FLOAT32)

Parameter	Register number ¹⁾ [Dec]	Register address ²⁾ [Hex]	Size ³⁾
Read and write register: Read fun	ction code 0x03 / Write function cod	le 0x04	
Air pressure ⁶⁾	5001	1388	1

1) Register number (decimal) starts from 1.

2) Register address (hexadecimal) starts from 0.

3) Number of registers

4) For Modbus address and protocol settings see Application Note Modbus AN0103 (available at <u>www.epluse.com/htp501</u>).

5) See chapter 5.5 Device Status Indication.

6) Ambient pressure in mbar, with 2 decimal digits (e.g. 1 008.25), default value 1 013.25 mbar.

Tab. 2 HTP501 registers for device setup

5.3 Modbus Register Map

The measurement data is saved as 32 bit floating point values (data type FLOAT32) and as 16 bit signed integer values (data type INT16).

FLOAT32

Parameter	Unit	Register number ¹⁾ [DEC]	Register address ²⁾ [HEX]
Read register: function code 0x03	/ 0x04		
	°C	1003	3EA
Temperature T	°F	1005	3EC
	К	1009	3F0
Relative humidity RH, Uw	%RH	1021	3FC
Water veneur partial procesure a	mbar	1101	44C
water vapour partial pressure e	psi	1103	44E
	°C	1105	450
Dew point temperature Td	°F	1107	452
	°K	1147	47A
	°C	1109	454
Wet bulb temperature Tw	°F	1111	456
	К	1145	478
Abaaluta humiditu du	g/m ³	1113	458
Absolute humany uv	gr/ft ³	1115	45A
Miving ratio r	g/kg	1121	460
Mixing faulo f	idity RH, Uw %RH 1021 3 r partial pressure e mbar 1101 4 psi 1103 4 mperature Td °C 1105 4 mperature Td °F 1107 4 mperature Td °F 1107 4 mperature Tw °C 1109 4 mperature Tw °F 1111 4 mperature Tw °F 1111 4 midity dv g/m³ 1113 4 midity dv g/kg 1121 4 r g/kg 1123 4 malpy h ft lbf/lb 1127 4 malpy h ft lbf/lb 1129 4 °C 1131 4 4 %F 1133 4 4 %F 1133 4 4	462	
	kJ/kg	1125	464
Specific enthalpy h	ft lbf/lb	1127	466
	BTU/lb	1129	468
	°C	1131	46A
Frost point temperature Tf	°F	1133	46C
	К	1149	47C
	°C	1237	4D4
Ice bulb temperature Ti	°F	1239	4D6
	К	1241	4D8

INT16							
Parameter	Unit	Scale ³⁾	Register number ¹⁾ [DEC]	Register address ²⁾ [HEX]			
Read register: function code 0x03	/ 0x04						
	°C	100	4002	FA1			
Temperature T	°F	50	4003	FA2			
	К	50	4005	FA4			
Relative humidity RH, Uw	%RH	100	4011	FAA			
Water veneur partial procesure a	mbar	10	4051	FD2			
	psi	1000	4052	FD3			
	°C	100	4053	FD4			
Dew point temperature Td	°F	100	4054	FD5			
	К	100	4074	FE9			
	°C	100	4055	FD6			
Wet bulb temperature Tw	°F	100	4056	FD7			
	К	100	4073	FE8			
Abaoluto humidity dy	g/m ³	10	4057	FD8			
Absolute humany dv	gr/ft ³	10	4058	FD9			
Mixing ratio r	g/kg	10	4061	FDC			
	gr/lb	10	4062	FDD			
	kJ/kg	1	4063	FDE			
Specific enthalpy h	ft lbf/lb	1	4064	FDF			
	BTU/lb	1	4065	FE0			
	°C	100	4066	FE1			
Frost point temperature Tf	°F	100	4067	FE2			
	К	100	4075	FEA			
	°C	100	4119	1016			
Ice bulb temperature Ti	°F	100	4120	1017			
	К	50	4121	1018			

Register number (decimal) starts from 1
 Register address (hexadecimal) starts from 0
 Examples: For scale 100, the reading of 2550 means a value of 25.5. For scale 50, the reading of 2550 means a value of 51.

Tab. 3 HTP501 FLOAT32 and INT16 measured data registers

5.4 Configurable Custom Modbus Map

It is possible to map measured value/status registers arbitrarily in a block with up to 20 registers provided for this purpose. This means that registers of interest may be mapped in an area with consecutive registers, so that important values can be queried with a single command in one block.

The register block for the configuration of the customisable Modbus map consists of the registers 6001 (0x1770) to 6010 (0x1779). For the blockwise query of the measured values behind Modbus registers 3001 (0xBB8) to 3020 (0xBCB), the firmware accesses this configuration area and thus gets the information which measured value/status registers are to be output. A maximum of 10 user-defined registers can be mapped. The table below shows an example:

Registers		assign	with these map to registers mirror signed measurands source registers			map to registers		irrored from rce registers
Dec	Hex	Meas.	Unit	Туре	Dec	Hex	Dec	Hex
Function cod	de 0x10				Function code	0x03/0x04		
6001	1770	Status	-	INT16	3001	BB8	602	259
6002	1771	RH	%	FLOAT32	3002	BB9	1021	3FC
				FLOAT32	3003	BBA	1022	3FD
6003	1772	Т	°C	FLOAT32	3004	BBB	1003	3EA
				FLOAT32	3005	BBC	1004	3EB
6004	1773	Td	°C	FLOAT32	3006	BBD	1105	450
				FLOAT32	3007	BBE	1106	451
6005	1774	Tw	°C	FLOAT32	3008	BBF	1109	454
				FLOAT32	3009	BC0	1110	455
6006	1775	Т	°F	FLOAT32	3010	BC1	1005	3EC
				FLOAT32	3011	BC2	1006	3ED
6007	1776	Td	°F	FLOAT32	3012	BC3	1107	452
				FLOAT32	3013	BC4	1108	453
6008	1777	RH	%	INT16	3014	BC5	4011	FAA
6009	1778	Т	°C	INT16	3015	BC6	4002	FA1
6010	1779	Т	°F	INT16	3016	BC7	4003	FA2
					3017	BC8	65536	FFFF
					3018	BC9	65536	FFFF
					3019	BCA	65536	FFFF
					3020	BCB	65536	FFFF

Tab. 4Custom Modbus map example

The custom map can be configured via:

- PCS10 Product Configuration Software and the USB configuration cable HA011018. The PCS10 can be downloaded free of charge from <u>www.epluse.com/pcs10</u>.
- Modbus protocol commands, refer to the example in chapter 5.6 Modbus RTU Examples.

5.5 **Device Status Indication**

If a critical error occurs, all Modbus values are set to NaN (according to IEEE754 for data type FLOAT32) or to 0x8000 (INT16). It is possible to read out all status and error information via Modbus register 602 (0x259). Errors are displayed in bit-coded form. If an event is present, the corresponding bit is set to 1.

Error Bits	Description	Recommended action
Bit 0	Error: Hardware T-sensing	Return the unit to the E+E Customer Service
Bit 1	Error: Short circuit of T sensing element	Clean sensing head acc. to cleaning instructions Return the faulty unit to E+E for service
Bit 2	Error: Open loop of T sensing element	Return the unit to the E+E Customer Service
Bit 3	Error: Short circuit of RH sensing element	Clean sensing head acc. to cleaning instructions Return the faulty unit to E+E for service
Bit 4	Error: Open loop of RH sensing element or heavy pollution	Clean sensing head acc. to cleaning instructions Return the faulty unit to E+E for service
Bit 5	Warning: Polluted RH sensing element	Clean sensing head acc. to cleaning instructions
Bit 6	Warning: Temperature below allowed working range	Observe the lower working range limit
Bit 7	Warning: Temperature above allowed working range	Observe the upper working range limit
Bit 8	Error: T sensing element defective	Return the unit to the E+E Customer Service
Bit 9	Warning: RH below allowed working range	Observe the lower working range limit
Bit 10	Warning: RH above allowed working range	Observe the upper working range limit
Bit 11	Error: RH sensing element defective	Return the unit to the E+E Customer Service
Bit 12	Error: Hardware RH sensing	Return the unit to the E+E Customer Service
Bit 13	-	-
Bit 14	-	-
Bit 15	-	-

Measured values outside the measuring range are limited with the corresponding limit value.

Tab. 5 Device status indication

Modbus RTU Examples 5.6

The HTP501's Modbus address is 69 [0x45].

Please refer to

- MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3, chapter 6: www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf
- E+E Application Note Modbus AN0103 (available at <u>www.epluse.com/htp501</u>)

Read the temperature (FLOAT32) T = 25.087642669677734375 °C from register address 0x3EA:

(e.g. PLC)	Hoyl						
Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CRC	
45	03	03	EA	00	02	EA FF	
Response	[Hex]:						
Modbus address	Function code	Byte count	Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register 2 value Lo	CRC
45	03	04	В3	7E	41	C8	89 D6

Floating point values are decoded according to IEEE754, please refer to the example at the end of this chapter.

Read register from custom modbus map

address 0x0BB8-0x0BB9, unconfigured

Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CR	RC	
45	03	0B	B8	00	02	49	4E	
Response	e [Hex]:							
Response Modbus address	e [Hex]: Function code	Byte count	Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Regis	ster 2 e Lo	CRC

Mapping custom Modbus map

assign RH (register address 0x3FC) and T [°C] (register address 0x3EA) to the custom Modbus map, starting address 0xBB8

Request [H	ex]:							
	Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	Byt cou	te nt
	45	10	17	70	00	02	04	
			Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register 2 value Lo	CR	С
			03	FC	03	EA	1E	81
			(R	H)	(T [°C])		
Response [Hex]:							
	Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CR	с
	45	10	17	70	00	02	4A	E3

Poll register address 0xBB8 (RH mapped)

Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CRC	
45	03	0B	B8	00	02	49 4	E
Response	e [Hex]:						
Response Modbus address	e [Hex]: Function code	Byte count	Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register value L	^{• 2} CRC

Poll register address 0xBB8-0xBBD (RH and T mapped, one register empty)

Request [Hex]:						
Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CRC	
45	03	0B	B8	00	06	48 8D	
Response	[Hex]:						
Modbus address	Function code	Byte count	Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register 2 value Lo	Register 3 value Hi
45	03	0C	1C	B2	41	9E	6B
Deviator 2	Deviator 4	Deviator 4	Dogiotor 5	Pogistor 5	Pogistor 6	Pogistor 6	
value Lo	value Hi	value Lo	value Hi	value Lo	value Hi	value Lo	CRC

Decoding of floating point values:

Floating point values are stored according to IEEE754. The byte pairs 1, 2 and 3, 4 are transformed as follows (numbers taken from T reading Modbus request/response example above):

Modbus response [Hex]

Byte 3	Byte 4	Byte 1	Byte 2
B3	7E	41	C8
MMMMMMM	MMMMMMM	SEEEEEE	EMMMMMMM

Tab. 6 Modbus response

IEEE754

Byte 1	Byte 2	Byte 3	Byte 4
41	C8	B3	7E
0100 0001	1100 1000	1011 0011	0111 1110
SEEE EEEE	EMMM MMMM	MMMM MMMM	MMMM MMMM
B . I I 05 007040000	07770 1075		

Decimal value: 25.087642669677734375

Tab. 7 Data representation according to IEEE754

6 Maintenance and Service

HTP501 does not require any special maintenance, nevertheless for high accurate measurements especially over wide RH and T ranges it is recommended to calibrate the probe every 12 months. If needed, the enclosure may be cleaned and the device may be re-adjusted as described below.

6.1 Cleaning

Use a damp soft cloth to remove deposits of dust or dirt from the exterior of the probe. Do not use any solvents or abrasive cleaning agents.

In case of dusty, oily and polluted environment:

- Use a damp soft cloth to remove deposits of dust or dirt from the exterior of the probe. Do not use any solvents
 or abrasive cleaning agents.
- The filter cap shall be replaced once in a while with an E+E original one (see below).
- If needed, the sensing element of the humidity probe can be cleaned by the user (see cleaning instructions www.epluse.com/cleaning-instructions).

6.2 Filter Cap Replacement

In a dusty, polluted environment it might be necessary to replace the filter cap once in a while. In most of the cases, a clogged filter shows visible contamination or dirt. Longer response time of the measurement also indicates a clogged filter cap. In such cases, replace the filter by a new, original one, see chapter 6.6 Spare Parts.

Procedure:

- 1. Turn the filter cap counter-clockwise for removing it.
- 2. Install the new filter cap fingertight by turning it clockwise.

NOTICE

When replacing a filter cap

- ensure that the sensing element and filter cap do not touch each other
- make sure not to touch or rub the sensing elements.

6.3 Protection during Site Cleaning Operations

During site cleaning or sterilization process, if the HTP501 remains on the measuring site the sensing head can be protected with the optional protection cap for 12 mm (0.47") probe (HA010783, see datasheet "Accessories").

In case the probe is removed from the site, it is recommended to apply the protection cap for the M12 cable socket (HA010781) and the one for the HTP501 M12 plug of (HA010782).

Fig. 7 Protection cap for Ø12 mm (0.47") probe (ordering code HA010783)

Fig. 8 Protection cap for M12 socket (ordering code HA010781)

Fig. 9 Protection cap for M12 plug (ordering code HA010782)

6.4 RH and T Calibration and Adjustment

Definition

- Adjustment
 - the specimen is brought in line with the reference.
- Calibration

the specimen is compared with a reference and its deviation from the reference is documented.

Humidity calibration and adjustment

Depending on the application and the requirements of certain industries, there might arise the need for periodical humidity calibration (comparison with a reference) or adjustment (bringing the device in line with a reference).

Calibration and adjustment at E+E Elektronik

Calibration and/or adjustment can be performed in the E+E Elektronik calibration laboratory. For information on the E+E capabilities in ISO or accredited calibration please see <u>www.eplusecal.com</u>.

Calibration and adjustment by the user

Depending on the level of accuracy required, the humidity reference can be:

- Humidity Calibrator (e.g. Humor 20), please see <u>www.epluse.com/humor20</u>.
- Humidity Calibration Kit (e.g. E+E Humidity Standards), please see <u>www.epluse.com/htp501</u>.
- An appropriate hand-held device.

6.5 Repairs

Repairs may be carried out by the manufacturer only. The attempt of unauthorized repair excludes any warranty claims.

6.6 Spare Parts

Description	Code
PTFE filter	HA010105
Metal grid filter with polycarbonate body	HA010106
Stainless steel sintered filter	HA010117

7 Accessories

For further information please refer to the Accessories datasheet.

Accessories	Code
Modbus configuration adapter	HA011018
E+E Product Configuration Software (Free download: <u>www.epluse.com/pcs10</u>)	PCS10
Humidity calibration kit	See data sheet Humidity Calibration Kit
M12 cable connector for self assembly, 4 pole	HA010707
Stainless steel mounting flange	HA010201
Stainless steel wall mounting clip	HA010225
Y-style splitter M12 - M12	HA030204
Protection cap M12 socket connector	HA010781
Protection cap M12 plug connector	HA010782
Protection cap for Ø12 mm probe	HA010783
Drip water protection	HA010503
SWAGElok fitting for type T4 ISO NPT	HA011102 HA011103

8 Technical Data

Measurands

Relative humidity (RH)

Measuring range	0100 %RH	
Accuracy ¹⁾ -15+40 °C (5104 °F), RH ≤ 90 % -15+40 °C (5104 °F), RH > 90 % -25+70 °C (-13+158 °F) -40120 °C (-40+248 °F)	±(0.95 + 0.0013*mv) %RH ±1.8 %RH ±(1.05 + 0.0084*mv) %RH ±(1.15 + 0.013*mv) %RH	mv = measured value
Factory calibration uncertainty ²⁾ @ 23 °C (73 °F) 090 %RH 90100 %RH	±(0.7 + 0.003*mv) %RH ±1 %RH	mv = measured value
Response time t ₉₀ @ 20 °C (68 °F)	<15 s	

1) Including hysteresis, non-linearity and repeatability.

Defined against E+E calibration reference.

2) Defined with an enhancement factor k=2, corresponding to a confidence level of 95 %.

Temperature (T)

1) Defined against E+E calibration refe rence.

2) Defined at 23 °C with an enhancement factor k=2, corresponding to a confidence level of 95 %.

Output

Digital

Digital interface	RS485 (HTP501 = 1 unit load)
Protocol	Modbus RTU
Default settings	Baud rate 9 600, parity even, 1 stop bit, Modbus address 69
Supported baud rates	9 600, 19 200, 38 400, 57 600, 76 800 and 115 200
Data types for measured values	FLOAT32 and INT16

General

Power supply class III (III) USA & Canada: Class 2 supply necessary, max. voltage 30 V DC	8 - 35 V DC		
Power consumption , typ. without termination resistor	40 mW		
Electrical connection	M12x1, 4 poles		
Pressure working range for pressure-tight probe type T10	0.0120 bar (0.15290 psi)		
Temperature working range Probe Cable M12 connector	-40+120 °C (-40+248 °F) -40+120 °C (-40+248 °F) -25+90 °C (-13+194 °F)		
Storage conditions	-40+80 °C (-40+176 °F), 095 %RH, non-condensing		
Probe material	Stainless steel 1.4404		
Cable jacket Please mind the mounting and installing instructions included in the user manual.	HFS 125XL, black, oil and fuel resistant		
Protection rating	IP66		
Elektromagnetic compability	EN 61326-1EN 61326-2-3Industrial EnvironmentFCC Part15 Class AICES-003 Class ADNV-CG-0339		
Shock and vibration	Tested acc. to EN 60068-2-64, EN 60068-2-27 and DNV-CG-0339		
Conformity			
Type approval	DNV Certificate No. TAA00003FA		
Configuration and adjustment	PCS10 Product Configuration Software (free download from <u>www.epluse.com/pcs10</u>) and configuration adapter		

1) DNV scope of approval: please refer to ordering guide.

Accuracy of E+E Humidity and Temperature Sensors

The measurement accuracy depends both on the performance of the measuring instrument and on the correct installation in the application.

For best accuracy, every E+E RH and T sensor is multipoint factory adjusted and calibrated in a highly stable RH / T reactor. Using a high-precision dew point mirror as reference, the overall uncertainty of the factory calibration U_{cal} is minimal.

The total measurement uncertainty U_{total} for E+E sensors is calculated in accordance with EA-4/02 (European Accreditation, Evaluation of the Measurement Uncertainty in Calibration) and with GUM (Guide to the Expression of Uncertainty in Measurement) as follows:

$$U_{\text{total}} = \mathbf{k} \cdot \sqrt{\left(\frac{U_{\text{cal}}}{2}\right)^2 + \left(\frac{u_{\text{accuracy}}}{\sqrt{3}}\right)^2}$$

U_{total}total accuracy incl. factory calibration

 $U_{\mbox{\scriptsize cal}}.....\mbox{the uncertainty of the factory calibration}$

u_{accuracy}...the accuracy of the measurement device

k.....enhancement factor k=2, corresponding to a confidence level of 95 %.

For external calibrations, U_{total} is to be used as the evaluation criterion. The calculation does not include effects due to long-term drift or chemical exposure.

As designated laboratory (NMI) responsible for maintaining the National Standard for humidity and temperature in Austria, E+E Elektronik represents the highest instance in humidity and temperature calibration.

9 Conformity

9.1 Declarations of Conformity

E+E Elektronik Ges.m.b.H. hereby declares that the product complies with the respective regulations listed below:

European directives and standards.

UK

UK statutory instruments and designated standards.

DNV (Det Norske Veritas) maritime type approval.

Please refer to the product page at www.epluse.com/htp501 for the Declarations of Conformity.

9.2 FCC Part 15 Compliance Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

9.3 ICES-003 Compliance Statement

This Class A digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

9.4 DNV Type Approval

Approval standard DNV-CG-0339:2021

Location Classes

Temperature	D
Humidity	В
Vibration	В
EMC	В
Enclosure	B / IP66

Company Headquarters & Production Site

E+E Elektronik Ges.m.b.H.

Langwiesen 7 4209 Engerwitzdorf | Austria T +43 7235 605-0 F +43 7235 605-8 info@epluse.com www.epluse.com

Subsidiaries

E+E Sensor Technology (Shanghai) Co., Ltd. T +86 21 6117 6129 info@epluse.cn

E+E Elektronik France SARL T +33 4 74 72 35 82 info.fr@epluse.com

E+E Elektronik Deutschland GmbH T +49 6171 69411-0 info.de@epluse.com

E+E Elektronik India Private Limited T +91 990 440 5400 info.in@epluse.com

E+E Elektronik Italia S.r.l. T +39 02 2707 86 36 info.it@epluse.com

E+E Elektronik Korea Ltd. T +82 31 732 6050 info.kr@epluse.com

E+E Elektronik Corporation T +1 847 490 0520 info.us@epluse.com

BA_HTP501 | Version v2.0 | 08-2024 © Copyright E+E Elektronik Ges.m.b.H. | All rights reserved.

your partner in sensor technology.

www.epluse.com