

User Manual MOP301

Digital Moisture in Oil Immersion Probe up to 120 °C (248 °F)

Content

1	Gen	eral Information	3
	1.1	Explanation of Warning Notices and Symbols	3
	1.2	Safety Instructions	4
		1.2.1 General Safety Instructions	4
		1.2.2 Intended Use	4
		1.2.3 Mounting, Start-up and Operation	5
	1.3	Environmental Aspects	5
2	Sco	pe of Supply	5
3	Prod	duct Description	6
	3.1	General	6
	3.2	Dimensions	7
	3.3	Electrical Connection	7
4	Mou	nting and Installation	8
	4.1	Installation of the Probe Directly in the Process	9
	4.3	Sampling Cell with Shut-off Function.	11
5	Setu	ıp and Adjustment	12
	5.1	PCS10 Product Configuration Software	12
	5.2	Modbus Setup	13
	5.3	Modbus Register Map	15
	5.4	Configurable Custom Modbus Map	16
	5.5	Device Status Indication	17
	5.6	Modbus RTU Examples	17
6	Mair	ntenance and Service	19
	6.1	Cleaning	19
	6.2	Moisture and Temperature Adjustment and Calibration	20
	6.3	Repairs	20
	6.4	Spare Parts	20
7	Acc	essories	21
8	Tech	nnical Data	21
9	Con	formity	23
	9.1	Declarations of Conformity	23
	9.2	FCC Part 15 Compliance Statement	23
	9.3	ICES-003 Compliance Statement	23
	9.4	DNV Type Approval	23

1 General Information

This user manual serves for ensuring proper handling and optimal functioning of the device. The user manual shall be read before commissioning the equipment and it shall be provided to all staff involved in transport, installation, operation, maintenance and repair. E+E Elektronik Ges.m.b.H. does not accept warranty and liability claims neither upon this publication nor in case of improper treatment of the described products.

All information, technical data and diagrams included in this document are based on the information available at the time of writing. It may contain technical inaccuracies and typographical errors. The contents will be revised on a regular basis and changes will be implemented in subsequent versions. The described product(s) and the contents of this document may be changed or improved at any time without prior notice.

All rights reserved by E+E Elektronik Ges.m.b.H. No part of this document may be reproduced, published or publicly displayed in any form or by any means, nor may its contents be modified, translated, adapted, sold or disclosed to a third party without prior written permission of E+E Elektronik Ges.m.b.H.

i PLEASE NOTE

Find this document and further product information on our website at www.epluse.com/mop301.

1.1 Explanation of Warning Notices and Symbols

Safety precautions

Precautionary statements warn of hazards in handling the device and provide information on their prevention. The safety instruction labeling is classified by hazard severity and is divided into the following groups:

M DANGER

Danger indicates hazards for persons. If the safety instruction marked in this way is not followed, the hazard will verly likely result in severe injury or death.

↑ WARNING

Warning indicates hazards for persons. If the safety instruction marked in this way is not followed, there is a risk of injury or death.

⚠ CAUTION

Caution indicates hazards for persons. If the safety instruction marked in this way is not followed, minor or moderate injuries may occur.

NOTICE

Notice signals danger to objects or data. If the notice is not observed, damage to property or data may occur.

Informational notes

Informational notes provide important information which stands out due to its relevance.

i INFO

The information symbol indicates tips on handling the device or provides additional information on it. The information is useful for reaching optimal performance of the device.

The title field can deviate from "INFO" depending on the context. For instance, it may also read "PLEASE NOTE".

www.epluse.com

Digital Moisture in Oil Immersion Probe | 3

1.2 Safety Instructions

1.2.1 General Safety Instructions

NOTICE

Improper handling of the device may result in its damage.

- The MOP301 enclosure, the sensing probe and the sensing module shall not be exposed to unnecessary mechanical stress.
- When replacing the filter cap make sure not to touch the sensing elements.
- The device must be operated with the filter cap on at all times.
- For sensor cleaning and filter cap replacement please refer to "Cleaning Instructions" at www.epluse.com
- Installation, electrical connection, maintenance and commissioning shall be performed by qualified personnel only.
- Use the MOP301 only as intended and observe all technical specifications.
- The device is designed for operation with class III supply (EU) and class 2 supply (NA).
- Do not apply the supply voltage to the RS485 data lines.

1.2.2 Intended Use

The MOP301 is dedicated for reliable and accurate monitoring of lubrication, hydraulic and insulation oils as well as diesel fuel. In addition to highly accurate measurement of water activity (aw) and temperature (T), the MOP301 calculates the absolute water content (x) in ppm.

The probe can be used up to 120 °C (248 °F), 20 bar (290 psi) and is available with either ISO or NPT slide fitting, which allows for variable immersion depth. The mounting and installation methods described in chapter 4 Mounting and Installation shall be used.

MARNING

Non-compliance with the product documentation may cause safety risks for people and the entire measurement installation.

The manufacturer cannot be held responsible for damages as a result of incorrect handling, installation and maintenance of the device.

- Do not use MOP301 in explosive atmosphere or for measurement of aggressive gases.
- This device is not appropriate for safety, emergency stop or other critical applications where device malfunction or failure could cause injury to human beings.
- The device may not be manipulated with tools other than specifically described in this manual.

NOTICE

Failing to follow the instructions in this user manual may lead to measurement inaccuracy and device failures

- The MOP301 may only be operated under the conditions described in this user manual and within the specification included in chapter 8 Technical Data.
- Unauthorized product modification leads to loss of all warranty claims. Modification may be accomplished only with an explicit permission of E+E Elektronik Ges.m.b.H.!

www.epluse.com

1.2.3 Mounting, Start-up and Operation

The MOP301 moisture in oil probe has been produced under state of the art manufacturing conditions, has been thoroughly tested and has left the factory after fulfilling all safety criteria. The manufacturer has taken all precautions to ensure safe operation of the device. The user must ensure that the device is set up and installed in a way that does not impair its safe use. The user is responsible for observing all applicable local and international safety guidelines for safe installation and operation of the device. This user manual contains information and warnings that must be observed by the user in order to ensure safe operation.

i PLEASE NOTE

The manufacturer or his authorized agent can only be held liable in case of willful or gross negligence. In any case, the scope of liability is limited to the corresponding amount of the order issued to the manufacturer. The manufacturer assumes no liability for damages incurred due to failure to comply with the applicable regulations, operating instructions or the specified operating conditions. Consequential damage is excluded from liability.

↑ WARNING

Non-compliance with the product documentation may cause accidents, personal injury or property damage.

- Mounting, installation, commissioning, start-up, operation and maintenance of the device may be performed by qualified staff only. Such staff must be authorized by the operator of the facility to carry out the mentioned activities.
- The qualified staff must have read and understood this user manual and must follow the instructions contained within. The manufacturer accepts no responsibility for non-compliance with instructions, recommendations and warnings.
- All process and electrical connections shall be thoroughly checked by authorized staff before putting the device into operation.
- Do not install or start-up a device supposed to be faulty. Make sure that such devices are not used accidentally by marking them clearly as faulty.
- A faulty device shall be removed from the process.
- Service operations other than described in this user manual may only be performed by the manufacturer.

1.3 Environmental Aspects

i PLEASE NOTE

Products from E+E Elektronik Ges.m.b.H. are developed and manufactured in compliance with relevant environmental protection requirements. Please observe local regulations for the disposal of the device.

For disposal, the individual components of the device must be separated according to local recycling regulations. The electronics shall be disposed of correctly as electronics waste.

2 Scope of Supply

- MOP301 Moisture in Oil Probe with Digital Interface according to ordering code
- Inspection certificate according to DIN EN 10204-3.1
- Quick guide

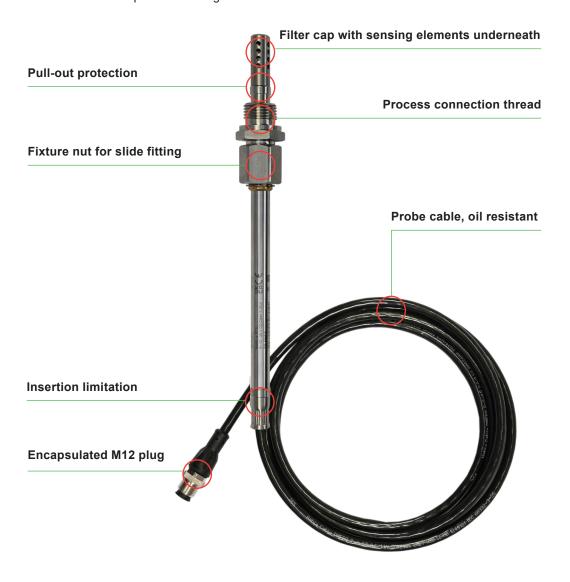
3 Product Description

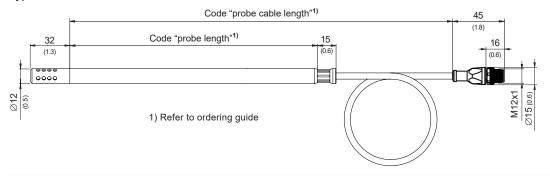
3.1 General

The MOP301 is a robust probe for moisture in oil and temperature measurement. Its IP66 rating and the E+E proprietary sensor leads protection make it ideal for highest requirements. It features a moisture in oil measuring range of 0...1 aw, a temperature measuring range of -40...120 °C (-40...248 °F) and a 20 bar (290 psi) pressure rating. Measurement is possible within oil pipes as well as in almost still oil.

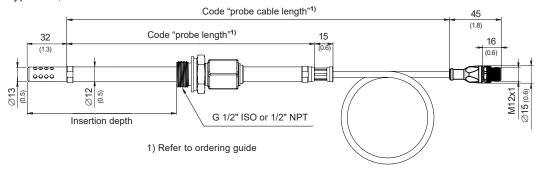
The MOP301 is typically deployed in monitoring of lubrication, hydraulic and insulation oils as well as diesel fuel in equipment and machinery. The oil to be monitored may be mineral, synthetic or biodegradable. Installation is simplified by various mounting options which are supported by E+E accessories.

The MOP301 provides the measured data at its digital RS485 interface via Modbus RTU protocol. The M12x1 connector links the probe to the digital infrastructure.




Fig. 1 MOP301 probe, Type T10, 20 bar (290 psi)

3.2 Dimensions


Values in mm (inch)

Types

Type T4

Type T10, 20 bar

Probe length [mm (inch)]	Min. insertion depth [mm (inch)]	Max. insertion depth [mm (inch)]
200 (7.9)	23 (0.9)	167 (6.6)
400 (15.7)	23 (0.9)	367 (14.4)

3.3 Electrical Connection

↑ WARNING

Incorrect installation, wiring or power supply may cause overheating and therefore personal injuries or damage to property.

For correct cabling of the device, always observe the presented wiring diagram for the product version used.

The manufacturer cannot be held responsible for personal injuries or damage to property as a result of incorrect handling, installation, wiring, power supply and maintenance of the device.

The relations of electrical potential between a bus system and an MOP301 probe are characterized by the following properties:

- The bus connection is not electrically isolated from the supply connection
- The MOP301 is not electrically isolated from the supply voltage
- Each MOP301 can be supplied separately

Plug for supply and analogue output

M12 device plug front view

Pin	Assignment
1	Supply voltage 8 - 35 V DC class III (Europe) / class 2 (North America)
2	B RS485 (D-)
3	GND
4	A RS485 (D+)

i PLEASE NOTE

The sensor tube must always be earthed for DNV EMC.

4 Mounting and Installation

The probe can be installed in applications such as oil storages with almost non-moving oil or as well in circulation pipes with moving oil.

MARNING

Incorrect installation, wiring or power supply may cause overheating or electrical shock and therefore personal injuries or damage to property.

For installation in high voltage equipment, e.g. in power transformers, there may be the danger of electrical shock. Always chose the installation depth so that the required safety distances between the MOP301 probe and any electrically live parts are respected.

NOTICE

- If the MOP301 is installed in equipment with moving parts, e.g. in gears, it has to be ensured that the probe does not touch any of these parts.
- In moving oil, the mechanical stress on the probe is minimized by placing only the filter cap into the flow.
 In systems with mechanical oil contaminants, the sensor may get installed only behind an appropriate filter.
- To maintain its integrity, the probe cable must not be routed over sharp edges. The cable's minimum bend radius is 5x the cable diameter in fixed installations and 10x the cable diameter when occasionally flexing the cable.

⚠ WARNING

Working with pressurised pipes poses a considerable risk of injury and damage to property.

When mounting an MOP301-T4 by means of ducts, make sure that precautions are taken to prevent the sensor from shooting out. The internal ducting (to the electronics) is suitable for up to 20 bar (290 psi). The respective feedthrough determines the actual working pressure (<20 bar (<290 psi)). As a rule, non cross-section-constricting and cross-section-constricting (cut-in) screw connections may be used; cross-section-constricting screw connections are only permitted in the rear part as shown in the sketch below (grey area from 32 + 150 mm from the probe tip; clamping is permitted in the grey marked area only). Please refer to Fig. 2.

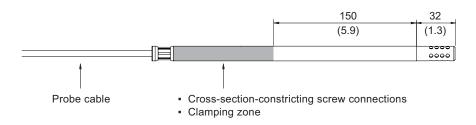


Fig. 2 MOP301 Type T4 fastening zone

i INFO

Optionally, there is a SWAGElok fitting available for type T4.

Order code:

- ISO HA011102
- NPT HA011103

4.1 Installation of the Probe Directly in the Process

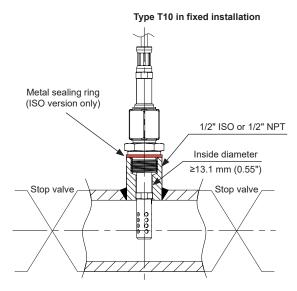


Fig. 3 Installation of the MOP301 probe directly into the process

For direct probe installation, shut-off valves shall be placed on both sides of the probe insert. This allows the sensor probe to be easily removed for maintenance and calibration.

For direct installation into a pressure chamber, make sure that the pressure in the chamber and the ambient pressure are equal before removing the probe. The temperature during probe installation may deviate by max. ±40 °C (±72 °F) from the regular temperature during normal operation.

NOTICE

Replace the metal sealing ring (refer to Fig. 3 Installation of the MOP301 probe directly into the process) by a new one every time before re-installing the probe.

Probe installation steps

- 1. Close both shut-off valves.
- 2. Place the sensor probe into the probe insert and adjust the immersion depth.
- 3. Tighten the lock nut with a torque of 30 Nm.
- 4. Open the valves.

↑ WARNING

Working with pressurised pipes poses a considerable risk of injury and damage to property.

Strictly observe the tightening torque. A torque lower than 30 Nm results in a smaller retention force of the clamping sleeve. This leads the risk of sudden expulsion of the sensing probe due to the pressure. A torque higher than 30 Nm may lead to permanent deformation of the clamping sleeve and the sensing probe. This would make the removal and re-installation of the probe difficult or even impossible.

www.epluse.com

Digital Moisture in Oil Immersion Probe | 9

4.2 Probe Installation with Ball Valve

The ball valve allows for installation and removal of the probe without process interruption. For mounting into the pipe, the ball valve shall be installed perpendicular to the flow direction.

i INFO

There are ball valves available as accessory with G 1/2" thread (order code HA050101) and with 1/2" NPT thread (order code HA050104).

NOTICE

The two metal sealing rings (refer to Fig. 4 Installation of the probe by utilizing the ball valve set) shall be replaced every time prior to re-installing the probe.

i PLEASE NOTE

The temperature during probe installation may deviate by max. ±40 °C (±72 °F) from the regular temperature during normal operation.

Probe installation steps (refer to Fig. 4 Installation of the probe by utilizing the ball valve set)

- 1. Install the probe into the ball valve while the ball valve is closed.
- 2. Open the ball valve.
- 3. Slide the probe through the ball valve to the desired immersion depth. Depending on the process pressure additional tools may be necessary for pushing the probe into the process. Make sure not to damage the probe and the cable.
- 4. Tighten the lock nut with a torque of 30 Nm.

⚠ WARNING

Strictly observe the tightening torque. A torque lower than 30 Nm results in a smaller retention force of the clamping sleeve. This leads the risk of sudden expulsion of the sensing probe due to the pressure. A torque higher than 30 Nm may lead to permanent deformation of the clamping sleeve and the sensing probe. This would make the removal and re-installation of the probe difficult or even impossible.

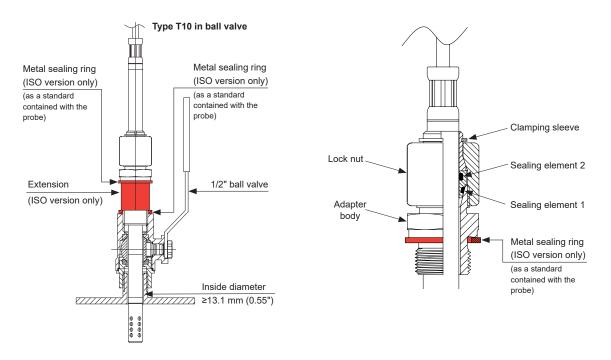


Fig. 4 Installation of the probe by utilizing the ball valve set

Removing the probe

- 1. Hold the probe firmly so that it is not suddenly ejected when the lock nut is released. Make sure not to bend and damage the probe cable.
- 2. Loosen the lock nut slowly with a spanner (spanner size 24) until the probe is pushed out by the system pressure. Do not loosen the lock nut completely, but only until the probe slides out by itself. If the system is almost pressureless, pull out the sensor slightly.
- 3. After the probe has been pushed out of the process up to the stop, close the ball valve.
- 4. Remove the probe from the ball valve.

NOTICE

Observe the correct positioning of the sealing element 1 before reinstalling the probe.

Replacement of the sealing element

In case of repeated installations and removals the sealing element 1 might be damaged. It can be replaced by the user.

4.3 Sampling Cell with Shut-off Function

The sampling cell with shut-off function is designed for placing a MOP301 in a bypass oil sampling or as well directly into the process. In both cases, the sampling cell could be moved into the oil flow or in service position by interupting the oil flow. When closing the G 1/2" ISO sensor port with a sealing plug, the sampling cell with shut-off function works like a ball valve. Using the sampling cell with shut-off function works like the method described in chapter 4.1 Installation of the Probe Directly in the Process, however without the need of stop valves in the upstream and downstream of the measurement point.

i INFO

The sampling cell with shut-off function is availabe with PN40 and DN25 as an accessory (order code HA050109).

Technical data of the sampling cell¹⁾

Pipe thread	Rp / Whitworth thread according to EN 10226 (old DIN 2999)
Senor port thread	G 1/2" ISO
Operating pressure	40 bar (at max. 80 °C) / 580 psi (at max. 176 °F)
Temperature range	-20+180 °C (-4+356 °F)
Wettet parts	Stainless steel 1.4408 and PTFE

¹⁾ Please note that specifications of probe and sampling cell may restrict each other in terms of temperature and pressure application range.

Replace the metal sealing ring (refer to Fig. 4 Installation of the probe by utilizing the ball valve set) by a new one every time before re-installing the probe. The temperature during probe installation may deviate by max. ±40 °C (±72 °F) from the regular temperature during normal operation.

Probe installation steps

- 1. Shut off the valve
- 2. Place the sensor probe into the probe insert and adjust the immersion depth
- 3. Tighten the lock nut with a torque of 30 Nm
- 4. Open the valve

MARNING

Strictly observe the tightening torque. A torque lower than 30 Nm results in a smaller retention force of the clamping sleeve. This leads the risk of sudden expulsion of the sensing probe due to the pressure. A torque higher than 30 Nm may lead to permanent deformation of the clamping sleeve and the sensing probe. This would make the removal and re-installation of the probe difficult or even impossible.

By removing the probe, close first the shut-off valve. Before openening the valve, ensure that the sensor port contains a sensor or is closed by a sealing plug.

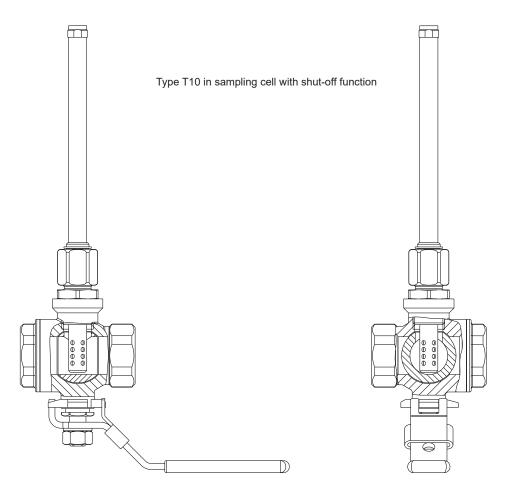


Fig. 5 Sampling cell with shut-off function position "open" (left) and position "closed" (right)

5 Setup and Adjustment

The MOP301 is ready to use and does not require any configuration by the user. The factory setup of MOP301 corresponds to the type number ordered. Please refer to the data sheet at www.epluse.com/mop301. The user can change the factory setup with the help the PCS10 Product Configuration Software and the Modbus configuration adapter (order code HA011018). Refer to chapter 5.1 below.

The user can change the display settings and the output configuration. Refer to chapter 5.1 for details.

5.1 PCS10 Product Configuration Software

The PCS10 provides a convenient graphical user interface to the MOP301. To use the software for performing adjustments and changes in settings, please proceed as follows:

- 1. Download the PCS10 Product Configuration Software from www.epluse.com/pcs10 and install it on the PC.
- 2. Connect the MOP301 to the PC using the Modbus configuration adapter.
- 3. Start the PCS10 software.
- **4.** Follow the instructions on the PCS10 opening page for scanning the ports and identifying the connected device.
- 5. Click on the desired setup or adjustment mode from the main PCS10 menu on the left. Follow the online instructions of the PCS10 which are displayed when clicking the "Tutorial" button.
- 6. Changes are uploaded to the probe by pressing the "Sync" button.

www.epluse.com Digital Moisture in Oil Immersion Probe | 12

NOTICE

The MOP301 may not be connected to any additional power supply when using the Modbus configuration adapter HA011018.

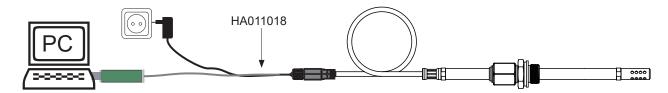


Fig. 6 MOP301 connected to a PC running PCS10

Besides an individual probe naming, the communication parameters may be changed and the custom Modbus map can be configured. Refer to chapter 5.4 Configurable Custom Modbus Map.

There is a separate menu item for setting the oil parameters. An oil library with up to 50 entries may be created. The library may be exported and imported and an appropriate parameter set may be uploaded to the probe.

A 1- and 2-point adjustment may be carried out and the factory setup may be restored again. Refer to chapter 6.2 Moisture and Temperature Adjustment and Calibration.

The configuration of an individual probe may be exported and imported.

5.2 Modbus Setup

	Factory settings	Selectable values (via PCS10)
Baud rate	9600	9 600, 19 200, 38 400, 57 600, 76 800, 115 200
Data bits	8	8
Parity	Even	None, odd, even
Stop bits	1	1, 2
Modbus address	70	1247

Tab. 1 Modbus RTU protocol settings

i PLEASE NOTE

- The recommended settings for multiple devices in a Modbus RTU network are 9600, 8, even, 1.
- The MOP301 represents 1 unit load on an RS485 network.

Device address, baud rate, parity and stop bits can be set via:

- PCS10 Product Configuration Software and the Modbus configuration adapter HA011018.
 The EE-PCS10 can be downloaded free of charge from www.epluse.com/pcs10.
- Modbus protocol in the register 1 (0x00) and 2 (0x01).
 Refer to Application Note Modbus AN0103 (available at www.epluse.com/mop301).

The serial number as ASCII-code is located in read-only registers 1 - 8 (0x00 - 0x07).

The firmware version is located in read-only register 9 (0x08) (bit 15...8 = major release; bit 7...0 = minor release). The sensor name as ASCII-code is located in read-only registers 10 - 17 (0x09 - 0x11).

NOTICE

When reading information that spans multiple registers, it is always necessary to read all registers, even if the desired information requires less.

NOTICE

For obtaining the correct floating point values, both registers have to be read within the same reading cycle. The measured value can change between two Modbus requests, exponent and mantissa may get inconsistent then.

i INFO

The Modbus function codes mentioned throughout this document shall be used as described in the MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3, chapter 6:

www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf

Communication settings (INT16)

Parameter	Register number ¹⁾ [Dec]	Register address ²⁾ [Hex]	Size ³⁾
Write register: function code 0x06			
Modbus address ⁴⁾	1	00	1
Modbus protocol settings ⁴⁾	2	01	1

Device information (INT16)

Parameter	Register number ¹⁾ [Dec]	Register address ²⁾ [Hex]	Size ³⁾
Read register: function code 0x03	/ 0x04		
Serial number (as ASCII)	1	00	8
Firmware version	9	08	1
Sensor name (as ASCII)	10	09	8
Device status (bit decoded) ⁵⁾	602	0x259	1

¹⁾ Register number (decimal) starts from 1.

MOP301 device information registers Tab. 2

²⁾ Register address (hexadecimal) starts from 0.

³⁾ Number of registers

⁴⁾ For Modbus protocol settings see Application Note Modbus AN0103 (available on www.epluse.com/mop301). 5) Please refer to chapter 5.5 Device Status Indication.

5.3 **Modbus Register Map**

The measurement data is saved as 32 bit floating point values (data type FLOAT32) and as 16 bit signed integer values (data type INT16).

FLOAT32

Parameter	Unit	Register number ¹⁾ [DEC]	Register address ²⁾ [HEX]
Read register: function code 0x03	/ 0x04		
Water activity aw	-	1135	46E
Water content x	ppm	1141	474
Tomporatura	°C	1003	3EA
Temperature	°F	1005	3EC
Saturation	%	1137	470
Oil parameter A	-	0224	DF
Oil parameter B	-	0226	E1
Write register: function code 0x10			
Oil parameter A ³⁾	-	0101	64
Oil parameter B ³⁾	-	0103	66

INT16

Parameter	Unit	Scale ⁴⁾	Register number ¹⁾ [DEC]	Register address ²⁾ [HEX]
Read register: function code 0x03	/ 0x04			
Water activity aw	-	100	4068	FE3
Water content x	ppm	0.1	4071	FE6
	°C	100	4002	FA1
Temperature T	°F	50	4003	FA2
	K	50	4005	FA4
Saturation	%	10	4069	FE4

Tab. 3 MOP301 FLOAT32 and INT16 measured data registers

Register number starts from 1
 Register address starts from 0
 Examples: Writing Parameter A -2663.30005 decimal: 46 10 00 64 00 02 04 74 CD C5 26 E3 44
 Writing Parameters A and B -1663.30005 and 7.3705 decimal: 46 10 00 64 00 04 08 E9 9A C4 CF DB 23 40 EB CA 19
 If two parameters are to be uploaded, it is recommended to write them with a single command.

⁴⁾ Examples: For scale 100, the reading of 2550 means a value of 25.5. For scale 50, the reading of 2550 means a value of 51.

5.4 Configurable Custom Modbus Map

It is possible to map measured value/status registers arbitrarily in a block with up to 20 registers provided for this purpose. This means that registers of interest may be mapped in an area with consecutive registers, so that important values can be queried with a single command in one block.

The register block for the configuration of the customisable Modbus map consists of the registers 6001 (0x1770) to 6010 (0x1779). For the blockwise query of the measured values behind Modbus registers 3001 (0xBB8) to 3020 (0xBCB), the firmware accesses this configuration area and thus gets the information which measured value/status registers are to be output. A maximum of 10 user-defined registers can be mapped. The table below shows an example:

Registers			. with the	ese Irands	map to I	registers		irrored from rce registers
Dec	Hex	Meas.	Unit	Туре	Dec	Hex	Dec	Hex
Function cod	de 0x10				Function code	0x03/0x04		
6001	1770	Status	-	INT16	3001	BB8	602	259
6002	1771	Т	°C	FLOAT32	3002	BB9	1003	3EA
			°C	FLOAT32	3003	BBA	1004	3EB
6003	1772	Т	°F	FLOAT32	3004	BBB	1005	3EC
			°F	FLOAT32	3005	BBC	1006	3ED
6004	1773	Т	Т	INT16	3006	BBD	4002	FA1
6005	1774	aw	-	FLOAT32	3007	BBE	1035	46E
			-	FLOAT32	3008	BBF	1036	46F
6006	1775	х	ppm	FLOAT32	3009	BC0	1141	474
			ppm	FLOAT32	3010	BC1	1142	475
6007	1776	Saturation	%	FLOAT32	3011	BC2	1137	470
			%	FLOAT32	3012	BC3	1138	471
6008	1777	aw	-	INT16	3013	BC4	4068	FE3
6009	1778	х	ppm	INT16	3014	BC5	4071	FE6
60110	1779	Saturation	%	INT16	3015	BC6	4069	FE4
					3016	BC7	65536	FFFF
					3017	BC8	65536	FFFF
					3018	BC9	65536	FFFF
					3019	BCA	65536	FFFF
					3020	всв	65536	FFFF

Tab. 4 Custom Modbus map example

The custom map can be configured via:

- PCS10 Product Configuration Software and the Modbus configuration adapter HA010018.
 The PCS10 can be downloaded free of charge from www.epluse.com/pcs10.
- Modbus protocol commands, refer to the example in chapter 5.6 Modbus RTU Examples.

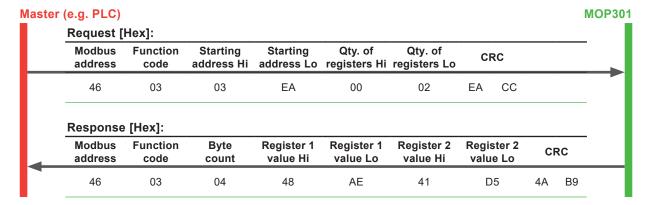
5.5 Device Status Indication

If a critical error occurs, all Modbus values are set to NaN (according to IEEE754 for data type FLOAT32) or to 0x8000 (INT16). It is possible to read out all status and error information via Modbus register 602 (0x259). Errors are displayed in bit-coded form. If an event is present, the corresponding bit is set to 1.

Measured values outside the measuring range are limited with the corresponding limit value.

Error Bits	Description	Recommended action
Bit 0	Error: Hardware T sensing	Return the faulty unit to E+E for service.
Bit 1	Error: Short circuit of T sensing element	Clean sensing head acc. to cleaning instructions. Return the faulty unit to E+E for service.
Bit 2	Error: Open loop of T sensing element	Return the faulty unit to E+E for service.
Bit 3	Error: Short circuit of moisture sensing element	Clean sensing head acc. to cleaning instructions. Return the faulty unit to E+E for service.
Bit 4	Error: Open loop of moisture sensing element or heavy pollution	Clean sensing head acc. to cleaning instructions. Return the faulty unit to E+E for service.
Bit 5	Warning: Polluted moisture sensing element or highly conductive oil	Clean sensing head or oil is incompatible.
Bit 6	Warning: Temperature below allowed working range	Observe the lower working range limit.
Bit 7	Warning: Temperature above allowed working range	Observe the upper working range limit.
Bit 8	Error: T sensing element defective	Return the faulty unit to E+E for service.
Bit 9	Warning: Moisture below allowed working range	Observe the lower working range limit.
Bit 10	Warning: Moisture above allowed working range	Observe the upper working range limit.
Bit 11	Error: Moisture sensing element defective	Return the faulty unit to E+E for service.
Bit 12	Error: Hardware moisture sensing	Return the faulty unit to E+E for service.

Tab. 5 Device status indication


5.6 Modbus RTU Examples

The MOP301's Modbus address is 70 [0x46].

Please refer to

- MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3, chapter 6: www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
- E+E Application Note Modbus AN0103 (available at www.epluse.com/mop301)

Read the temperature (FLOAT32) T = 26.66048812866211 °C from register address 0x3EA:

Floating point values are decoded according to IEEE754, please refer to the example at the end of this chapter.

Read register from custom modbus map

address 0x0BB8-0x0BB9, unconfigured

Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CR	RC		
46	03	0B	В8	00	02	49	7D		
Response	e [Hex]:								
Response Modbus address	e [Hex]: Function code	Byte count	Register 1	Register 1	Register 2 value Hi	Regis		CF	RC

Mapping custom Modbus map

assign T (register address 0xEA) and aw (register address 0x46E) to the custom Modbus map, starting address 0xBB8

Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	Byte count		
46	10	17	70	00	02	04		
			Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register 2 value Lo	CF	RC
			03	EA	04	6E	F2	52
			T [°C]	aı	N		
Respons	e [Hex]:							
Modbus address	Function code	Byte count	Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register 2 value Lo	CF	RC

Poll register address 0xBB8

Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CRC	
46	03	0B	В8	00	02	49 7D	
Respons	e [Hex]:						
Respons Modbus address	e [Hex]: Function code	Byte count	Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register 2 value Lo	CRC

Poll register address 0xBB8-0xBBE

Request [Hex]:						
Modbus address	Function code	Starting address Hi	Starting address Lo	Qty. of registers Hi	Qty. of registers Lo	CRC	
46	03	0B	B8	00	06	48 BE	
Response	[Hex]:						
Modbus address	Function code	Byte count	Register 1 value Hi	Register 1 value Lo	Register 2 value Hi	Register 2 value Lo	Register 3 value Hi
46	03	0C	0B	C9	41	DB	BD
Register 3 value Lo	Register 4 value Hi	Register 4 value Lo	Register 5 value Hi	Register 5 value Lo	Register 6 value Hi	Register 6 value Lo	CRC
7B	3E	AD	FF	FF	FF	FF	B7 9A

Decoding of floating point values:

Floating point values are stored according to IEEE754. The byte pairs 1, 2 and 3, 4 are transformed as follows (numbers taken from T reading Modbus request/response example above):

modbus response [nex]				
Byte 3	Byte 4	Byte 1	Byte 2	
48	AE	41	D5	
MMMMMMM	MMMMMMM	SEEEEEE	EMMMMMM	

Tab. 6 Modbus response

IEEE754			
Byte 1	Byte 2	Byte 3	Byte 4
41	D5	48	AE
0100 0001	1101 0101	0100 1000	1010 1110
SEEE EEEE	EMMM MMMM	MMMM MMMM	мммм мммм
Decimal value: 26.660	048812866211		

Tab. 7 Data representation according to IEEE754

6 Maintenance and Service

The MOP301 does not require any special maintenance, nevertheless for high accurate measurements especially over wide aw and T ranges it is recommended to calibrate the probe every 12 months. If needed, the enclosure may be cleaned and the device may be re-adjusted as described below.

6.1 Cleaning

If required, the sensing head can be cleaned. Please find the E+E cleaning instructions at www.epluse.com/cleaning-instructions.

6.2 Moisture and Temperature Adjustment and Calibration

Depending on the application and the requirements of certain industries, there might arise the need for periodical calibration (comparison with a reference) or adjustment (bringing the device in line with a reference).

The MOP301 can be calibrated / adjusted with the help of the PCS10. For this purpose, the probe needs to be connected to a PC via a Modbus configuration adapter.

Definitions

- Calibration documents the accuracy of a measurement device. The device under test (specimen) is compared with the reference and the deviations are documented in a calibration certificate. During the calibration, the specimen is not changed or improved in any way.
- Adjustment improves the measurement accuracy of a device. The specimen is compared with the reference and brought in line with it. An adjustment can be followed by a calibration which documents the accuracy of the adjusted specimen.

Calibration and adjustment at E+E Elektronik

Calibration and/or adjustment can be performed in the E+E Elektronik calibration laboratory. For information on the E+E capabilities in ISO or accredited calibration please refer to www.eplusecal.com.

Calibration and adjustment by the user

i PLEASE NOTE

Moisture calibration and adjustment is to be carried out for the measurand "relative humidity" and shall be performed in air.

Depending on the level of accuracy required, the humidity reference can be:

- Humidity calibrator (e.g. Humor 20), please refer to www.epluse.com/humor20.
- Humidity Calibration Kit (e.g. E+E Humidity Standards), please refer to www.epluse.com/mop301.
- An appropriate hand-held device.

6.3 Repairs

Repairs may be carried out by the manufacturer only. The attempt of unauthorized repair excludes any warranty claims.

6.4 Spare Parts

Description	Code
Stainless steel filter cap for flow <1 m/s	HA010110
Stainless steel filter cap for flow >1 m/s)	HA010111

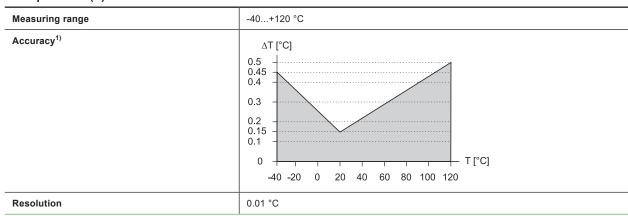
www.epluse.com

7 Accessories

For further information please refer to the Accessories datasheet.

Accessories	Code
Modbus configuration adapter	HA011018
E+E Product Configuration Software (Free download: www.epluse.com/pcs10)	PCS10
Humidity calibration kit	See data sheet Humidity Calibration Kit
M12 Y adaptor	HA030204
Protection cap M12 socket	HA010781
Protection cap M12 plug	HA010782
Ball valve G 1/2" ISO	HA050101
Ball valve 1/2" NPT	HA050104
Sampling cell with shut-off function, PN40, DN25	HA050109
SWAGElok fitting for type T4	
ISO NPT	HA011102 HA011103

8 Technical Data


Measurands

Water activity (aw) / water content (x)

01 aw 0100 000 ppm; actual range depends on the oil type, for non-mineral transformer oil, specific solubility parameters are needed (ppm output is valid in the range 0100 °C (32212 °F))
±0.02 aw
±0.025 aw
±0.03 aw
10 min.
0.0001 aw

¹⁾ Traceable to international standards, administrated by NIST, PTB, BEV...
The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Temperature (T)

¹⁾ Traceable to international standards, administrated by NIST, PTB, BEV,...

The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Output

Digital

Digital interface	RS485 (MOP301 = 1 unit load)
Protocol	Modbus RTU
Factory settings	9 600 Baud, parity even, 1 stop bit, Modbus address 70
Supported Baud rates	9 600, 19 200, 38 400, 57 600, 76 800 und 115 200
Measured data types	FLOAT32 and INT16

General

Power supply class III (III) USA & Canada: Class 2 supply necessary, max. voltage 30 V DC	8 - 35 V DC				
Power consumption, typ. without termination resistor	40 mW				
Electrical connection	M12x1, 4 poles				
Pressure rating	20 bar (290 psi)				
Temperature working range Sensing element + filter cap Probe Cable M12 connector	-40+125 °C (-40+257 °F) -40+120 °C (-40+248 °F) -40+120 °C (-40+248 °F) -25+90 °C (-13+194 °F)				
Storage conditions	-40+80 °C (-40+176 °F) 095 %RH, non-condensing				
Material Cable jacket ¹⁾ Probe	HFS 125XL, black, oil and fuel resistant Stainless steel 1.4404				
Protection rating	IP66 / NEMA 4X				
Electromagnetic compatibility	EN 61326-1 EN 61326-2-3 Industrial Environment FCC Part15 Class B ICES-003 Class B DNV-CG-0339				
Shock and vibration	Tested acc. to EN 60068-2-6, EN 60068-2-27 and DNV-CG-0339				
Conformity	CE UK DNV				
Type approval	DNV Certificate No. TAA00003FA				
Configuration and adjustment	PCS10 Product Configuration Software (free download) and configuration adapter				

¹⁾ Please mind the mounting and installing instructions included in the user manual. 2) DNV scope of approval: please refer to ordering guide.

9 Conformity

9.1 Declarations of Conformity

E+E Elektronik Ges.m.b.H. hereby declares that the product complies with the respective regulations listed below:

European directives and standards.

and

UK statutory instruments and designated standards.

DNV (Det Norske Veritas) maritime type approval.

Please refer to the product page at www.epluse.com/mop301 for the Declarations of Conformity.

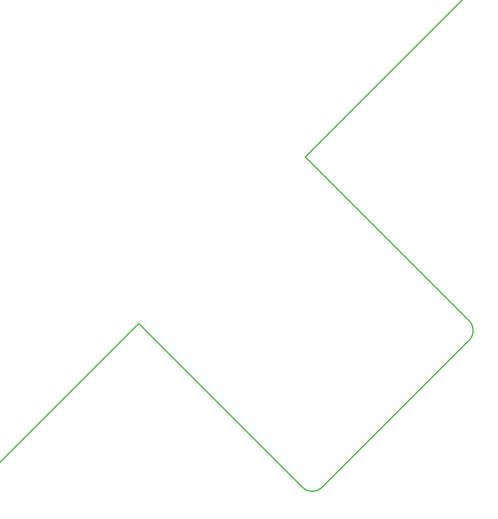
9.2 FCC Part 15 Compliance Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

9.3 ICES-003 Compliance Statement

This Class A digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.


9.4 DNV Type Approval

Approval standard DNV-CG-0339:2021

Location Classes

Temperature	D
Humidity	В
Vibration	В
EMC	В
Enclosure	B / IP66

www.epluse.com

Company Headquarters & Production Site

E+E Elektronik Ges.m.b.H.

Langwiesen 7 4209 Engerwitzdorf | Austria T +43 7235 605-0 F +43 7235 605-8 info@epluse.com www.epluse.com

Subsidiaries

E+E Sensor Technology (Shanghai) Co., Ltd. T +86 21 6117 6129

info@epluse.cn

E+E Elektronik France SARL

T +33 4 74 72 35 82 info.fr@epluse.com

E+E Elektronik Deutschland GmbH

T +49 6171 69411-0 info.de@epluse.com

E+E Elektronik India Private Limited T +91 990 440 5400

info.in@epluse.com

E+E Elektronik Italia S.r.l.

T +39 02 2707 86 36 info.it@epluse.com

E+E Elektronik Korea Ltd. T +82 31 732 6050

info.kr@epluse.com

E+E Elektronik Corporation T +1 847 490 0520 info.us@epluse.com

your partner in sensor technology.